Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags
نویسندگان
چکیده
Acid mine drainage (AMD) and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur), which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13]), Actinobacteria (TM214), Alphaproteobacteria (DA111), and Chloroflexi (JG37-AG-4), which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18) by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases). Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.
منابع مشابه
Heat Recovery from High Temperature Slags: A Review of Chemical Methods
Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside ...
متن کاملIntegration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction
With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced...
متن کاملAchieving waste to energy through sewage sludge gasification using hot slags: syngas production
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400...
متن کاملPreparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application
The present paper investigated the process of the slag wool fabrication using high temperature blast furnace (BF) slag modified by coal ash (CA). The liquidus temperature and viscosity of the slag system with different mass ratios of BF slag and CA were measured through an inner cylinder rotation method. The approximate mass ratio used to fabricate the slag wool was therefore determined and sla...
متن کامل108: Hydrocarbons
The modern world could not exist without hydrocarbons. Virtually everything we touch is either coated with or made up primarily of hydrocarbon products. Organic chemistry originated during the Industrial Revolution, evolving largely due to advances in coal tar technology. In the coking process, bituminous (soft) coal is heated to liberate coal gas. This gas contains volatile hydrocarbons that c...
متن کامل